Discontinuous Grain Boundaries of Forged René 41
نویسندگان
چکیده
Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use of the information in this report, including numerical data, is done at the risk of the user. These risks may include catastrophic failure of the device or infringement of patent or copyright laws. The students, faculty, and staff of Cal Poly State University, San Luis Obispo cannot be held liable for any misuse of the project. Abstract Forged components must pass a grain size specification (grain size, distribution) for acceptance in an application. The varying amounts of plastic deformation during forging can lead to abnormally large recrystallized grain sizes in certain regions of the part, which will not pass specification. The question exists whether these abnormally coarse grains are truly comprised of poly crystalline fine grains with grain boundaries resistant to etching techniques. To investigate this abnormal grain size effect, a cross section of a forged René 41 nickel-based superalloy aircraft engine ring was cut and sectioned into six segments. Those segments were then prepared for microstructural analysis using a 95% HCl and 5% H 2 O 2 etch typical of metallographic testing companies. The results indicated an apparent segregation of the grains with multiple regions showing a few abnormally large grains surrounded by much smaller ones. A fine grain size dominated some samples (ASTM grain size 5 to 7), these would pass specification. Other regions showed intermittent large grains (ASTM grain size 1 to 2). The presence of annealing twins within the large grains proved that these larger grains were single grains, but their true size is masked by discontinuous boundaries throughout. The abnormally large grains followed some flow pattern suggesting their manifestation may be a function of how much strain was applied to that section of the alloy during forging. Scanning electron microscopy (SEM) in conjunction with electron backscatter diffraction (EBSD), determined the orientation and size of each grain on a map and identified grains independently of etching grain boundaries. As a result, the discontinuous grain boundaries in question were determined to be low angle grain boundaries that were resistant to chemical attack by the etchant.
منابع مشابه
Grain Boundary Character Dependence on Nucleation of Discontinuous Precipitates in Cu-Ti Alloys
The dependence of the grain boundary character distribution for a Cu-4 at. % Ti polycrystal alloy (average grain size: 100 µm) on the nucleation of cellular discontinuous precipitates was systematically investigated. In an alloy over-aged at 723 K, cellular discontinuous precipitates consisted of a terminal Cu solid solution and a stable β-Cu₄Ti lamellae nucleated at grain boundaries. Electron ...
متن کاملDynamic Recrystallization of the Constituent γ Phase and Mechanical Properties of Ti-43Al-9V-0.2Y Alloy Sheet
A crack-free Ti-43Al-9V-0.2Y alloy sheet was successfully fabricated via hot-pack rolling at 1200 °C. After hot-rolling, the β/γ lamellar microstructure of the as-forged TiAl alloy was completely converted into a homogeneous duplex microstructure with an average γ grain size of 10.5 μm. The dynamic recrystallization (DRX) of the γ phase was systematically investigated. A recrystallization fract...
متن کاملDiscontinuous Dynamic Recrystallization during Accumulative Back Extrusion of a Magnesium Alloy
The study of nucleation mechanism of new grains during severe plastic deformation of magnesium alloys is of great importance to control the characteristics of final microstructures. To investigate the role of discontinuous recrystallization, a wrought AZ31 magnesium alloy was deformed by accumulative back extrusion process at 330 °C. The obtained microstructures were studied using optical and...
متن کاملEffect of Boron Doping on Cellular Discontinuous Precipitation for Age-Hardenable Cu–Ti Alloys
The effects of boron doping on the microstructural evolution and mechanical and electrical properties of age-hardenable Cu–4Ti (at.%) alloys are investigated. In the quenched Cu–4Ti–0.03B (at.%) alloy, elemental B (boron) is preferentially segregated at the grain boundaries of the supersaturated solid-solution phase. The aging behavior of the B-doped alloy is mostly similar to that of conventio...
متن کاملReview on ultrafined/nanostructured magnesium alloys produced through severe plastic deformation: microstructures
A review on the microstructural evolution in magnesium alloys during severe plastic deformation waspresented. The challenges deserved to achieve ultrafine/ nanostructured magnesium were discussed.The characteristics of the processed materials are influenced by three main factors, including i)difficult processing at low temperatures, ii) high temperature processing and the occurrence ofdynamic r...
متن کامل